A resultant 8-node solid-shell element for geometrically nonlinear analysis
نویسندگان
چکیده
منابع مشابه
A New Stress Based Approach for Nonlinear Finite Element Analysis
This article demonstrates a new approach for nonlinear finite element analysis. The methodology is very suitable and gives very accurate results in linear as well as in nonlinear range of the material behavior. Proposed methodology can be regarded as stress based finite element analysis as it is required to define the stress distribution within the structural body with structural idealization a...
متن کاملGeometrically nonlinear analysis of axially functionally graded beams by using finite element method
The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...
متن کاملA triangular six-node shell element
We present a triangular six-node shell element that represents an important improvement over a recently published element [1]. The shell element is formulated, like the original element, using the MITC procedure. The element has the attributes to be spatially isotropic, to pass the membrane and bending patch tests, to contain no spurious zero energy mode, and is formulated without an artificial...
متن کاملNonlinear Dynamics Analysis of FGM Shell Structures with a Higher Order Shear Strain Enhanced Solid-Shell Element
In this paper, non-linear dynamics analysis of functionally graded material (FGM) shell structures is investigated using the higher order solid-shell element based on the Enhanced Assumed Strain (EAS). With this element, a quadratic distribution of the shear stress through the thickness is considered in an enhancing part. Material properties of the shell structure are varied continuously in the...
متن کاملA geometrically nonlinear finite-element model of the cat eardrum.
Current finite-element (FE) models of the eardrum are limited to low pressures because of the assumption of linearity. Our objective is to investigate the effects of geometric nonlinearity in FE models of the cat eardrum with an approximately immobile malleus for pressures up to +/-2.2 kPa, which are within the range of pressures used in clinical tympanometry. Displacements computed with nonlin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Mechanics
سال: 2004
ISSN: 0178-7675,1432-0924
DOI: 10.1007/s00466-004-0646-1